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The dynamic stability of non-linearly elastic composite plates subjected to periodic
in-plane loading is investigated. In"nitely wide plates made of resin matrix composite are
considered. The non-linearly elastic behavior of the resin matrix is modelled by the
generalized Ramberg}Osgood representation. The e!ect of the matrix non-linearity on
the overall response of the composite is predicted by the micromechanical method of cells.
The dynamic stability analysis is performed by evaluating the largest Lyapunov exponent,
the sign of which indicates whether the system is stable or not. It is shown that this approach
forms a convenient tool for predicting parametric stability of non-linear composite
structures.
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1. INTRODUCTION

Parametric instability of plates arises when a periodic in-plane loading induces transverse
vibrations of increasing amplitudes. It turns out that this occurs for certain relationships
between the loading frequency and the natural frequencies of the structure.

Numerous problems of dynamic instability in elastic structures were studied by Bolotin
[1] where the dynamic instability regions were constructed through the investigation of the
Mathieu equation by Fourier analysis. In those works, the in#uence of damping on the
dynamic stability was studied. Non-linear e!ects occurring either due to geometric
non-linearities (e.g., the non-linear von-Karman strain}displacement relations), or due to
the non-linear behavior of the material (e.g., non-linear stress}strain relations) were also
included. A review and a monograph including further results and extensive bibliography
was written by Evan-Iwanowski [2, 3].

Analysis of parametric instability of anisotropic plates was "rst carried out by Bennet [4].
Composite cylindrical shells were considered by Bogdanovich [5] where the integro-
di!erential equation, resulting from the equations of motion by the application of series
expansion and Laplace transform, was investigated. Geometric non-linearity and
viscoelastic e!ects were taken into account. The parametric excitation of linear viscoelastic
homogeneous as well as laminated plates was investigated by Aboudi et al. [6] and
Cederbaum et al. [7] using the Lyapunov exponents. This approach was further employed
by Touati and Cederbaum [8] to study the dynamic instability of non-linear viscoelastic
homogeneous plates.

Lyapunov exponents are numbers which re#ect global properties of the attractors of
a dynamical system. Their sign indicates whether the correlation between two initially close
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trajectories will be kept or lost, namely whether the motion is stable or not [9, 10]. This
method is specially useful for de"ning the loss of stability of non-linear structures. In linear
structures, the resonance parametric vibrations are of unrestrictedly increasing amplitude.
Hence, the evolution of an unbounded response can be the criterion for loss of stability. In
contrast, the response of non-linear structures can be unstable but yet bounded. For such
a case, a di!erent criterion for instability is needed.

In the present paper, the method of Lyapunov exponents is employed to predict whether
a non-linearly elastic composite plate which is subjected to periodic in-plane loading is
stable or not. The considered non-linearity is due to the non-linear behavior of the resin
matrix which is modelled by the Ramberg}Osgood representation. Relying on the behavior
of the matrix and the "bers, the e!ective constitutive relations for the anisotropic
non-linearly elastic composite is established by the micromechanical method of cells [12].
Due to the existence of non-linear e!ects, an incremental procedure is necessary for the
analysis of the response. This is performed in conjunction with an incremental procedure
according to which the Lyapunov exponent is determined at every time step.

Results that show the e!ect of the material non-linearity are given for in"nitely wide
plates made of initially isotropic and homogeneous non-linearly elastic material as well as
for non-linearly elastic composite plates.

2. PROBLEM FORMULATION

Consider a rectangular non-linearly elastic anisotropic plate of an in"nite width in the
y direction. The plate is uniformly supported along the edges x"0, ¸ which are subjected
to a uniform normal in-plane periodic load. Neglecting the in-plane inertia, the response of
the plate is governed by the following equations [11]:
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For a simply supported plate the boundary conditions at x"0, ¸ are given by
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The strain}displacement relations for the present cylindrical bending situation are
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where e0
xx

, e0
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are the strains of the midplane of the plate.
Let the plate layers consist of unidirectional linearly elastic anisotropic "bers reinforcing

non-linearly elastic resin matrix. The linearly elastic "ber material behavior is ruled by

p(f)
ij
"C(f)

ijkl
e(f)
kl

, (5)

where C(f)
ijkl

is the elastic sti!ness tensor of the "ber material.
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The non-linearly elastic behavior of the elastic matrix is modelled by the
Ramberg}Osgood representation, according to which the uniaxial strain}stress relations in
the x

1
direction are of the form
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where E(m) is Young's modulus of the matrix, and p
0
and n are parameters characterizing the

matrix material non-linearity. A generalization of equation (6) leads to following multiaxial
constitutive relations:
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The overall response of the two-phase composite is obtained by the micromechanical

method of cells [12]. This micromechanical analysis predicts the non-linear anisotropic
e!ective constitutive relations for the composite, relying on the material behavior of its
constituents. By adopting an incremental formulation in conjunction with the
micromechanical method of cells analysis, the instantaneous e!ective sti!ness tensor C1 I can
be established such that the instantaneous response of the non-linear composite is given by

Dr6 "C1 I De6 , (8)

where De6 and Dr6 are the increments of strains and stresses, respectively, and all tensors are
referred to the material axes, one of which coincides with the "bers directions. By the
application of the standard transformation of co-ordinates, the instantaneous e!ective
constitutive law (8) becomes

Dr"CI De, (9)

where all tensors are related to the plate co-ordinates (x, y, z).
For a state of plane stress the increment of the stress at a point in the plate is related to the

increment of strain through the following relations:
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where QI is the instantaneous reduced sti!ness matrix which depends on the current state of
elastic "eld.

As a result of the above formulation of the instantaneous behavior of the composite, the
incremental constitutive relations of the non-linearly elastic plate under cylindrical bending
can be expressed as follows:
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where the instantaneous extension, coupling and bending plate sti!nesses are given by
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The "rst two equations (1) imply that the inplane stress resultants are independent of
x such that taking into account the boundary conditions (3) their increments are given by
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Through a comparison between expressions (12) and equations (11), the increment of the
midplane strains can be written in the following form:
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By substituting the latter relation (13) into the third equation (11), the expression for
DM

xx
becomes
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In order to investigate the parametric stability of the plate, we consider a time-dependent
in-plane load which is the result of the following strain imposed to the edges x"0, ¸:
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s
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d
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In equation (16), e
s
and e

d
are constants and h is the load frequency. The increment of the

corresponding inplane load can be determined by the "rst equation (13).
Having established the incremental constitutive equations (10) for the non-linearly elastic

plate, the third equation (1) can be transformed into an incremental form. Consequently, the
variation of the displacement Dw within a time increment Dt, t(l~1))t)t(l) is governed by
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Using the separation of variables, the displacement w is assumed to have the following
form which satis"es the simply supported boundary conditions

w(x, t)"+
m

=
m
(t) sin(mnx/¸), (18)
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It should be noted that the boundary condition on M
xx

is satis"ed as long as the initial
con"guration of the plate is symmetric with respect to z"0. In such cases, due to the fact
that the loading is constant throughout the plate thickness, BI

ij
at the edges remain zero.

By employing the Galerkin method in conjunction with equations (14) and (19), equation
(17) is reduced to the following set of ordinary non-linear di!erential equations:
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3. PARAMETRIC STABILITY ANALYSIS

In order to investigate the stability of non-linearly elastic plates under periodic in-plane
loads, the concept of Lyapunov exponent is employed. Lyapunov stability analysis of
a dynamical system consists of the evaluation of a corresponding set of characteristic
numbers (e.g., see Reference [9]). The negative values of these characteristic numbers are
known as Lyapunov exponents. According to Lyapunov, the motion is asymptotically
stable if all the exponents are negative. A positive Lyapunov exponent indicates an
exponential separation between two initially close trajectories, namely instability of the
system [10]. The system is stable if the largest Lyapunov exponent is not greater than zero.
Consequently, it is su$cient to evaluate the largest Lyapunov exponent in order to
characterize the behavior of a dynamical system.

According to Goldhirsch et al. [13], the Lyapunov exponents can be determined through
the following procedure. Consider the system of ordinary non-linear di!erential equations

v5 "F(v). (21)

The stability equation is de"ned to be

y5 "Gy, (22)
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where
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and y can be regarded as a small perturbation dv. Within the time increment 0(t(t(1),
system (22) with G (t"0) is solved numerically for the normalized initial conditions

Ey (0)E"1,

where E .E is the Euclidean norm. This yields y(t(1)).
Equations (22) with G (t"t(1)) and with the following initial conditions,
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are then solved within the second time interval t(1)(t(t(2) yielding v(t(2) ). The process is
repeated for n time intervals while correspondingly, system (21) is solved to provide the
values of v (t(l)) needed for the evaluation of G. Namely, the incremental procedure is
simultaneously used to get the non-linear response and the Lyapunov exponents.

For the n'th time interval, de"ne the value of the parameter k
n

as follows:
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It has been shown [13] that for "nite large time, the value of k
n
approaches to the value of

the Lyapunov exponent.
Let us employ the above procedure to investigate the dynamic stability of a non-linearly

elastic in"nitely wide plate. For the present problem, equation (21) is obtained by reducing
equation (20) to a set of "rst order di!erential equations. The matrix G in the stability
equations (22) can thus be explicitly written as follows:
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Note that the matrix G is a function of the instantaneous sti!nesses AI
11

, BI
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, DI
11

, which
depend on the current state of stress. The latter is the solution of equation (20) which (when
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reduced to a set of "rst order equations) is the relevant special case of equation (21). Hence
equation (20), has to be solved simultaneously with the progressing of the stability analysis.
Within a time interval t(l~1)(t(t(l), the numerical integration (high order Range}Kutta)
of equations (20), with the initial conditions

D=
k
"0, D=Q

k
"=Q

k
at t"t(l~1) (25)

yields the displacement "eld at t(l). On the basis of this, the stress "eld and the elements of
the instantaneous sti!ness tensor at every point of the plate can be re-evaluated. The
coe$cients of the stability equations G

ij
are updated accordingly, and the stability analysis

is carried on.

4. APPLICATION

The previously described approach is applied to investigate the parametric stability of an
in"nitely wide plate made of non-linearly elastic material. Two kinds of plate are
considered: (a) Homogeneous isotropic plate made of epoxy having the following material
properties: E"6 GPa, l"0)35, p

0
"160 MPa, n"3, o"1400 kg/m3. Note that for the

presently used n, the material behavior has the same nature in both the positive and
negative stress ranges. Namely, the stress}strain curve decreases in slope as deformation
(negative or positive) increases. (b) Cross-ply plates the laminae of which are made of the
previously described epoxy reinforced by "bers having the following properties:
E(f)"73 GPa, l(f)"0)22, o(f)"2540 kg/m3. A "ber volume fraction v

f
"0)3 is

considered.
The thickness ratio of the plate is ¸/h"40. One mode approximation with M"1 is

conducted. The inplane load is the result of the edges strain constraints equation (16) with

e
s
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d
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11
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11

is the axial strain corresponding to the buckling load of the

corresponding linearly elastic plate, u"(n2/¸2) J(D(0)
11

/oh) J1#b and b"!0)98.

4.1. HOMOGENEOUS ISOTROPIC PLATE

In general, the non-linear material behavior induces anisotropy even in an initially
isotropic material. Moreover, due to the dependence of the constitutive law on the
deformation state, the structure has to be considered as a non-homogeneous one. Hence,
the previously presented general formulation is to be used for initially homogeneous
isotropic plates.

The variations of the largest Lyapunov exponent under periodic loads of various
parameters are shown in Figures 1}3. In order to demonstrate the e!ect of non-linearity of
the elastic material, the Lyapunov exponents of the corresponding linearly elastic plate are
also shown.

As is shown in Figure 1, for X"0)55, g"0)5, the Lyapunov exponent approaches zero
for both the linear and non-linear plates, hence both reveal a stable behavior.

Figure 2 displays the variation of k versus 1/t for X"0)5, g"0)1. Under these loading
conditions the linearly elastic plate is unstable, since its Lyapunov exponent approaches
a positive value. On the other hand, the Lyapunov exponent of the non-linearly elastic plate
tends to zero indicating the stability of that system.



Figure 1. Lyapunov exponent for a homogeneous plate X"0)55, g"0)5.

Figure 2. Lyapunov exponent for a homogeneous plate X"0)5, g"0)1.

Figure 3. Lyapunov exponent for a homogeneous plate X"1)0, g"0)05.
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Figure 4. Stability regions for the linearly elastic problem as predicted by Bolotin [1]. Circles and crosses
indicate correspondingly stable and unstable non-linearly elastic cases.
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For X"1, g"0)05 both the linear and non-linear plates exhibit an instable behavior.
This is deduced from the results presented in Figure 3, according to which the two
corresponding Lyapunov exponents approach positive values. However, the value of the
Lyapunov exponents of the linearly elastic plate is the highest.

In Figure 4 several non-linearly elastic cases (including the previously discussed ones) are
indicated on the map of linearly elastic stability regions as drawn by Bolotin [1]. A circle is
used for indicating a stable non-linearly elastic behavior, while a cross indicates instability.
It can be observed that the non-linearity seems to reduce the region of instability in a way
resembling the e!ect of viscoelasticity [1, 6]. This observation is in accordance with the
conclusion of Touati and Cedrebaum [8], that material non-linearity tends to increase the
stability of non-linearly elastic plates. However, no negative Lyapunov exponent was
obtained for any of the examined cases. Namely, in contrast to the behavior of viscoelastic
plates, none of the presently examined non-linearly elastic plates exhibit damping e!ect
which yields asymptotically stable (negative Lyapunov exponents) behavior.

4.2. CROSS-PLY PLATE

The e!ect of the non-linear matrix behavior on the stability of unidirectional plates
subjected to a parametric loading of X"0)5, g"0)1, is demonstrated in Figures 5 and 6 for
plates with lamination angle h"03 and 903 respectively. While the material non-linearity
stabilizes the behavior of the [03] plate, its e!ect on the behavior of the [903] plate is less



Figure 5. Lyapunov exponent for a unidirectional [03] plate X"0)5, g"0)1.

Figure 6. Lyapunov exponent for a unidirectional [903] plate X"0)5, g"0)1.

Figure 7. Lyapunov exponent for a unidirectional [03/903/03] plate X"0)1, g"0)01.
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pronounced. The largest Lyapunov exponent of the non-linearly elastic [903] plate, like that
of the corresponding linear plate, approaches a positive value which indicates an unstable
response.

The variation of k versus 1/t for a [03/903/03] plate under loading conditions having
X"0)1, g"0)01 is shown in Figure 7. For this con"guration a stable behavior is predicted
due to the inclusion of non-linear e!ects.

5. CONCLUSIONS

The parametric stability analysis of an in"nitely wide non-linearly elastic composite
plates has been performed by the method of Lyapunov exponents. This method is specially
useful for de"ning the loss of stability of non-linear structures exhibiting an unstable
bounded response.

The non-linearly elastic behavior of the matrix material has been modelled by the
generalized Ramberg}Osgood representation. The e!ective behavior of the composite has
been expressed by means of the instantaneous sti!ness tensor, established by the
micromechanical method of cells.

The non-linear e!ects due to the material behavior have been found to increase the
stability of the non-linearly elastic composite plate.
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